Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 MatAnyone: модель для выделения по маске людей на видео.

MatAnyOne - memory-based модель для видео-маттинга, разработанная для получения стабильных и точных результатов в сценариях реального постпродакшена. В отличие от методов, требующих дополнительного аннотирования, MatAnyOne использует только кадры видео и маску сегментации целевого объекта, определенную на первом кадре.

MatAnyOne оперирует регионально-адаптивным слиянием памяти, где области с небольшими изменениями сохраняют данные из предыдущего кадра, а области с большими изменениями больше полагаются на информацию из текущего кадра. Такая техника позволяет MatAnyOne эффективно отслеживать целевой объект, даже в сложных и неоднозначных сценах, сохраняя при этом четкие границы и целые части переднего плана.

При создании модели применялась уникальная стратегия обучения, которая опирается на данные сегментации для улучшения стабильности выделения объекта. В отличие от распространенных практик, MatAnyOne использует эти данные непосредственно в той же ветви, что и данные маски. Это достигается путем применения регионально-специфичных потерь: пиксельная потеря для основных областей и улучшенная DDC-потеря для граничных областей.

Для обучения был специально создан кастомный набор данных VM800, который вдвое больше, разнообразнее и качественнее, чем VideoMatte240K, что по итогу значительно улучшило надежность обучения объектному выделению на видео.

В тестах MatAnyOne показал высокие результаты по сравнению с существующими методами как на синтетических, так и на реальных видео:

🟠На VideoMatte и YouTubeMatte, MatAnyOne - лучшие результаты по MAD (средняя абсолютная разница) и dtSSD (расстояние преобразования формы);

🟢В бенчмарке с реальными видео MatAnyOne достиг MAD 0.18, MSE 0.11 и dtSSD 0.95, что значительно лучше, чем у RVM10 (MAD 1.21, MSE 0.77, dtSSD 1.43) и MaGGIe12 (MAD 1.94, MSE 1.53, dtSSD 1.63.


⚠️ Согласно обсуждению в issues репозитория, MatAnyOne способен работать локально от 4 GB VRAM и выше с видео небольшой длительности. Реальных технических критериев разработчик не опубликовал.

▶️Локальная установка и запуск web-demo на Gradio:

# Clone Repo
git clone https://github.com/pq-yang/MatAnyone
cd MatAnyone

# Create Conda env and install dependencies
conda create -n matanyone python=3.8 -y
conda activate matanyone

pip install -e .

# Install python dependencies for gradio
pip3 install -r hugging_face/requirements.txt

# Launch the demo
python app.py


📌Лицензирование: S-Lab License 1.0.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VideoMatte #MatAnyone
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1617
Create:
Last Update:

🌟 MatAnyone: модель для выделения по маске людей на видео.

MatAnyOne - memory-based модель для видео-маттинга, разработанная для получения стабильных и точных результатов в сценариях реального постпродакшена. В отличие от методов, требующих дополнительного аннотирования, MatAnyOne использует только кадры видео и маску сегментации целевого объекта, определенную на первом кадре.

MatAnyOne оперирует регионально-адаптивным слиянием памяти, где области с небольшими изменениями сохраняют данные из предыдущего кадра, а области с большими изменениями больше полагаются на информацию из текущего кадра. Такая техника позволяет MatAnyOne эффективно отслеживать целевой объект, даже в сложных и неоднозначных сценах, сохраняя при этом четкие границы и целые части переднего плана.

При создании модели применялась уникальная стратегия обучения, которая опирается на данные сегментации для улучшения стабильности выделения объекта. В отличие от распространенных практик, MatAnyOne использует эти данные непосредственно в той же ветви, что и данные маски. Это достигается путем применения регионально-специфичных потерь: пиксельная потеря для основных областей и улучшенная DDC-потеря для граничных областей.

Для обучения был специально создан кастомный набор данных VM800, который вдвое больше, разнообразнее и качественнее, чем VideoMatte240K, что по итогу значительно улучшило надежность обучения объектному выделению на видео.

В тестах MatAnyOne показал высокие результаты по сравнению с существующими методами как на синтетических, так и на реальных видео:

🟠На VideoMatte и YouTubeMatte, MatAnyOne - лучшие результаты по MAD (средняя абсолютная разница) и dtSSD (расстояние преобразования формы);

🟢В бенчмарке с реальными видео MatAnyOne достиг MAD 0.18, MSE 0.11 и dtSSD 0.95, что значительно лучше, чем у RVM10 (MAD 1.21, MSE 0.77, dtSSD 1.43) и MaGGIe12 (MAD 1.94, MSE 1.53, dtSSD 1.63.


⚠️ Согласно обсуждению в issues репозитория, MatAnyOne способен работать локально от 4 GB VRAM и выше с видео небольшой длительности. Реальных технических критериев разработчик не опубликовал.

▶️Локальная установка и запуск web-demo на Gradio:

# Clone Repo
git clone https://github.com/pq-yang/MatAnyone
cd MatAnyone

# Create Conda env and install dependencies
conda create -n matanyone python=3.8 -y
conda activate matanyone

pip install -e .

# Install python dependencies for gradio
pip3 install -r hugging_face/requirements.txt

# Launch the demo
python app.py


📌Лицензирование: S-Lab License 1.0.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VideoMatte #MatAnyone

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1617

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA